On a second order rational systems of difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM

In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.  

متن کامل

studying the behavior of solutions of a second-order rational difference equation and a rational system

in this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.

متن کامل

Solution for Rational Systems of Difference Equations of Order Three

with initial conditions x−2, x−1, x0, y−2, y−1, and y0 are nonzero real numbers. Recently, there has been great interest in studying difference equation systems. One of the reasons for this is the necessity for some techniques that can be used in the investigation of equations arising in mathematical models describing real life situations in population biology, economics, probability theory, ge...

متن کامل

On Some Fractional Systems of Difference Equations

This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.

متن کامل

On a System of Second-Order Nonlinear Difference Equations

This paper is concerned with dynamics of the solution to the system of two second-order nonlinear difference equations 1 1 1 n n n n x x A x y + − − = + , 1 1 1 n n n n y y A x y + − − = + ,  n = 0,1, , where ( ) 0, A∈ ∞ , ( ) 0, i x− ∈ ∞ , ( ) 0, i y− ∈ ∞ , i = 0, 1. Moreover, the rate of convergence of a solution that converges to the equilibrium of the system is discussed. Finally, some num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hokkaido Mathematical Journal

سال: 2015

ISSN: 0385-4035

DOI: 10.14492/hokmj/1470052352